
Patrick Valduriez, Esther Pacitti, Cédric Coulon
Atlas group, INRIA and LINA,

University of Nantes

ACI MDP2P 2003-2006
http://www.sciences.univ-nantes.fr/lina/ATLAS/MDP2P/

Large-scale Experimentation with
Preventive Replication in a

Database Cluster

2

Outline

Context and architecture
Preventive Replication
Replication Manager Architecture
Optimizations
RepDB* Prototype
Experiments
Conclusion

3

Related work
Eager replication in DB clusters

Kemme and Alonso [VLDB00, TODS00]
Pedonne and Schiper [DISC98]

Lazy replication in dist. systems
Pacitti et al. [VLDB99, VLDBJ00, DAPD01]

Replication in middleware
Amza et al. [Middleware03]
Cecchet [OPODIS03]
Gançarski et al. [CoopIS02, Info. Syst.05]
Jiménez-Peris et al. [ICDCS02, Middleware04]

Preventive replication
Pacitti et al. [Europar03, Vecpar04, BDA05, IEEE
ICPADS05, VLDB-WDDIR05, DAPD05]

4

Context

Update-intensive applications
e.g. Application Service Providers

Database cluster with shared-nothing
architecture and fast, reliable network
Data replication to improve availability and
performance

5

DB cluster architecture

Fast NetworkNode 1

Node 2

Request Router

Replication Manager

Transaction Load
Balancer

Application Manager

DBMS

Current
Load
Monitor

Node n

Global User
Directory

Global
Data
Placement

6

Preventive replication - objectives

Multi-master replication
Each node can update replicas

Database autonomy
Support black-box DBMS

Strong replica consistency
Equiv. to ROWA (read one – write all)

Non-blocking
Unlike 2PC

Performance
Scale-up and speed-up

7

Preventive Replication - assumptions

Network interface provides FIFO reliable
multicast
Max is the upper bound of the time
needed to multicast a message
Clocks are ε-synchronized
Each transaction has a chronological
timestamp C (its arrival time)

8

Preventive replication - consistency
Consistency Criteria = total order

Transactions are received in the same order
at all nodes involved: this corresponds to the
execution order

To enforce total order, transactions are
chronologically ordered at each node using their
delivery time

delivery_time = C + Max + ε
After Max+ε, all transactions that may have
committed before C are supposed to be received
and executed before T

9

Preventive replication - principle
Propagation

When a node i receives a trans. T, it
multicasts it to all nodes including itself

Each node putsT in pending queue qi in FIFO order

Scheduling
At each node, all pending transactions are
ordered wrt delivery times

After expiration of its delivery time, T is put in
running queue

Execution
Transactions in running queue are submitted
to the DBMS for execution

10

Queues management

T1T3T4…

T2T5T6…

Refresher

Pending queues
(one per node)

From Node 1

From Node 2
T1T2T3…

Running queue

DeliverDBMS

schedule

exec

11

R

S

r', s'

r'', s''

R1, S1

R2, S2

R3, S3

R4, S4

Bowtie Fully replicated

Partially replicated

R1, S1

S2R2

Partially replicated

R1, S

R2, s'

R3

s''

Preventive replication - configurations

PRIMARY copies (R):
Can be updated only
on master node

Secondary copies (r):
read-only

MULTIMASTER copies
(R1): Can be updated
on more than one
node

12

Some transactions cannot
be executed

N2

T1(R, S)

R1, S1

S2R2

N3

N1

Partially replication - problem

Example@N2
UPDATE R SET c1 WHERE c2 IN

(SELECT c3 FROM S);

13

On the target nodes, T1 waits (Step 3)
After execution on the origin node, a Refresh Transaction (RT1) is
multicast to target nodes (Step 4)
RT1 is executed to update replicated data

R1, S1

R2 S2

N1

N2 N3

Client
T1(rS, wR)

R1, S1

R2 S2

N1

N2 N3

R1, S1

R2 S2

N1

N2 N3

Client

Answer T1

R1, S1

R2 S2

N1

N2 N3

Step 1

R1, S1

R2 S2

N1

N2 N3

Step 2 Step 3 Step 4 Step 5

T1(rS, wR)

Standby

RT1(wR)

Perform

Partially Replicated Configurations (2)

14

Replication Manager Architecture

15

Optimization: eliminating delay times (1)

In a cluster network, messages are naturally
totally ordered [Pedonne & Schiper, 1998]
We can parallelize transaction scheduling and
execution

Submit a transaction to execution as soon as it is
received
Schedule the commit order of the transactions

A transaction can be committed only after Max + ε

If a transaction is received out of order, abort and
re-execute all younger transactions

Yields concurrent execution of non conflicting
transactions

16

Optimization: Eliminating delay times (2)

Scheduling

Execution

T
Commit

Scheduling CommitExecutionT

Abort

Basic Preventive replication

Optimized Preventive Replication

T’s refreshment time = Max + ε + t

T’s refreshment time = maximum (Max + ε, t)

17

RepDB* Prototype: Architecture

DBMSClients

Replica
Interface
JDBC server

Log
Monitor

DBMS specific

Propagator Receiver

Refresher

Deliver

Network

JDBC JDBC

RepDB*

18

RepDB* Prototype: Implementation

Open Source Software under GPL
200 downloads after one month of release
Java (10K+ lines)
DBMS is a black-box

PostgreSQL, Oracle

JDBC interface (RMI-JDBC)
Uses Spread toolkit (Center for Networking and
Distributed Systems - CNDS) to manage the network

Simulation version in SimJava

http://www.sciences.univ-nantes.fr/ATLAS/RepDB

19

TPC-C benchmark

1 / 5 / 10 Warehouses
10 clients per Warehouse
Transactions’ arrival rate is 1s / 200ms /
100ms
Load = combination of

Update transactions
New-order: high frequency (45%)
Payment: high frequency (45%)

Read-only transactions
Order-status: low frequency (5%)
Stock-level: low frequency (5%)

20

Experiments

Cluster of 64 nodes (Paris@irisa.fr)
PostgreSQL 7.3.2 on Linux
1 Gb/s network

2 Configurations
Fully Replicated (FR)
Partially Replicated (PR): each type of
TPC-C transaction runs using ¼ of the
nodes

21

Scale up

0

200

400

600

800

1000

1200

0 16 32 48 64

number of nodes
R

es
po

ns
e

tim
es

 (m
s) 1

5
10

a) Fully Replicated (FR) b) Partially Replicated (PR)

0

200

400

600

800

1000

1200

0 16 32 48 64

number of nodes

R
es

po
ns

e
tim

es
 (m

s)

1
5
10

Response time of update transactions

22

Speed up
Launch 128 clients that submit Order-status

transactions (read-only)

0

400

800

1200

1600

2000

0 16 32 48 64

number of nodes

Q
ue

rie
s

pe
r s

ec
on

d 1
5
10

a) Fully Replicated (FR) b) Partially Replicated (PR)

0

400

800

1200

1600

2000

0 16 32 48 64

number of nodes
Q

ue
rie

s
pe

r s
ec

on
d 1

5
10

23

Impact of optimistic execution

0

1

2

3

4

5

6

0 16 32 48 64

number of nodes

pe
rc

en
ta

ge

Unordored
Aborted

a) Fully Replicated (FR) b) Partially Replicated (PR)

0

1

2

3

4

5

6

0 16 32 48 64
number of nodes

pe
rc

en
ta

ge

Unordored
Aborted

24

Delay vs. Trans. size

0

50

100

150

200

250

0 100 200 300 400

Transaction size (ms)

D
el

ay
 (m

s)

OptPrev
Max

8 nodes

25

Conclusion

Large-scale experimentation with 64-node
cluster

Excellent scale-up and speed-up for typical OLTP
Important impact of optimizations
Time-consuming activity

Future work
More experimentation going on with various loads
Extensions to WAN for GRID5000

