Large-scale Experimentation with
Preventive Replication In a

!'_ Database Cluster

Patrick Valduriez, Esther Pacitti, Cédric Coulon
Atlas group, INRIA and LINA,
University of Nantes

ACI MDP2P 2003-2006
http://www.sciences.univ-nantes.fr/lina/ATLAS/MDP2P/

W INRIA ‘Iﬂa‘i



i Outline

= Context and architecture

= Preventive Replication

= Replication Manager Architecture
= Optimizations

= RepDB* Prototype

= EXperiments

= Conclusion



Related work

= Eager replication in DB clusters
= Kemme and Alonso [VLDBO0O, TODSO00]
= Pedonne and Schiper [DISC98]

= Lazy replication In dist. systems
= Pacitti et al. [VLDB99, VLDBJ0O0O, DAPDO01]

= Replication in middleware
= Amza et al. [Middleware03]
= Cecchet [OPODIS03]
= Gancarski et al. [CooplS02, Info. Syst.05]
= Jiménez-Peris et al. [ICDCS02, Middleware04]

= Preventive replication

= Pacitti et al. [Europar03, Vecpar04, BDAOS5, IEEE
ICPADSO05, VLDB-WDDIRO05, DAPDO5]



i Context

= Update-intensive applications
= e.g. Application Service Providers

= Database cluster with shared-nothing
architecture and fast, reliable network

= Data replication to improve availability and
performance



DB cluster architecture
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i Preventive replication - objectives

= Multi-master replication
= Each node can update replicas

= Database autonomy

= Support black-box DBMS
= Strong replica consistency

= Equiv. to ROWA (read one — write all)
= Non-blocking

= Unlike 2PC

= Performance
= Scale-up and speed-up



i Preventive Replication - assumptions

= Network interface provides FIFO reliable
multicast

= Max s the upper bound of the time
needed to multicast a message

= Clocks are g-synchronized

= Each transaction has a chronological
timestamp C (its arrival time)



Preventive replication - consistency

= Consistency Criteria = total order

= [ransactions are received In the same order
at all nodes involved: this corresponds to the
execution order

= To enforce total order, transactions are
chronologically ordered at each node using their
delivery time

delivery time= C+ Max+ &€

= After Max+e¢, all transactions that may have
committed before C are supposed to be received
and executed before 7



i Preventive replication - principle

= Propagation

= When a node /receives a trans. 7, it
multicasts it to all nodes including itself

= Each node puts 7 in pending queue g;in FIFO order

= Scheduling

= At each node, all pending transactions are
ordered wrt delivery times
« After expiration of its delivery time, 7is put In
running gqueue

s Execution

= Transactions in running queue are submitted
to the DBMS for execution 9



Queues management
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Preventive replication - configurations

S

= Partially replicated

SII

R, S,

= Partially replicated

PRIMARY copies (R):
Can be updated only
on master node

Secondary copies (r):
read-only

MULTIMASTER copies

(R,): Can be updated
on more than one
node
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i Partially replication - problem

= Some transactions cannot

be executed
T1(R, S)

l N1 Example@N2
R, S, UPDATE R SET ¢c1 WHERE c2 IN
A (SELECT ¢3 FROM 9S);
BZ §2
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artially Replicated Configurations (2)

Client Client
lTl(rS, Wg) %nswer T,
N1
Nl Bla §1 Nl Bl! §1 Bl! §1 Nl Bll §]_
BZ §2 Bz §2 Bz §2
N2 N3 TN2 N3 " N2 N3
Standby Perform
Step 1 Step 2 Step 3 Step 4 Step 5

= On the target nodes, 7, waits (Step 3)

= After execution on the origin node, a Refresh Transaction (RT)) is
multicast to target nodes (Step 4)

= R7,Iis executed to update replicated data
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i Replication Manager Architecture
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Optimization: eliminating delay times (1)

= In a cluster network, messages are naturally
totally ordered [Pedonne & Schiper, 1998]

= We can parallelize transaction scheduling and
execution

= Submit a transaction to execution as soon as It Is
received

= Schedule the commit order of the transactions
= A transaction can be committed only after Max + ¢

= If a transaction iIs received out of order, abort and
re-execute all younger transactions
= Yields concurrent execution of non conflicting
transactions
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i Optimization: Eliminating delay times (2)

Basic Preventive replication

7 —sohdung y— Executon—(_commit >

I’'s refreshment time = Max + € + t

Optimized Preventive Replication

I's refreshment time = maximum (Max + g, t)
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* RepDB* Prototype: Architecture

Network
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i RepDB* Prototype: Implementation

= Open Source Software under GPL
= 200 downloads after one month of release
= Java (10K+ lines)

= DBMS is a black-box
= PostgreSQL, Oracle

= JDBC interface (RMI-JDBC)

= Uses Spread toolkit (Center for Networking and
Distributed Systems - CNDS) to manage the network

= Simulation version In SimJava

http://www.sciences.univ-nantes.fr/ATLAS/RepDB
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i TPC-C benchmark

= 1/5/ 10 Warehouses
= 10 clients per Warehouse

s [ransactions’ arrival rate is 1s/ 200ms/
100/ms

» Load = combination of

= Update transactions
= New-order: high frequency (45%)
« Payment: high frequency (45%)
= Read-only transactions
= Order-status: low frequency (5%)
= Stock-level: low frequency (5%)
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i Experiments

= Cluster of 64 nodes (Paris@irisa.fr)
= PostgreSQL 7.3.2 on Linux
= 1 Gb/s network

= 2 Configurations
« Fully Replicated (FR)

» Partially Replicated (PR). each type of
TPC-C transaction runs using ¥4 of the
nodes
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Scale up

Response time of update transactions
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Speed up

Launch 128 clients that submit Order-status

transactions (read-only)
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Impact of optimistic execution
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Delay vs. Trans. size
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i Conclusion

= Large-scale experimentation with 64-node
cluster
= Excellent scale-up and speed-up for typical OLTP
= Important impact of optimizations
= TiIme-consuming activity

s Future work

= More experimentation going on with various loads
= Extensions to WAN for GRID5000
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