Large-scale Experimentation with
Preventive Replication In a

!'_ Database Cluster

Patrick Valduriez, Esther Pacitti, Cédric Coulon
Atlas group, INRIA and LINA,
University of Nantes

ACI MDP2P 2003-2006
http://www.sciences.univ-nantes.fr/lina/ATLAS/MDP2P/

W INRIA ‘Iﬂa‘i



i Outline

= Context and architecture

= Preventive Replication

= Replication Manager Architecture
= Optimizations

= RepDB* Prototype

= EXperiments

= Conclusion



Related work

= Eager replication in DB clusters
= Kemme and Alonso [VLDBO0O, TODSO00]
= Pedonne and Schiper [DISC98]

= Lazy replication In dist. systems
= Pacitti et al. [VLDB99, VLDBJ0O0O, DAPDO01]

= Replication in middleware
= Amza et al. [Middleware03]
= Cecchet [OPODIS03]
= Gancarski et al. [CooplS02, Info. Syst.05]
= Jiménez-Peris et al. [ICDCS02, Middleware04]

= Preventive replication

= Pacitti et al. [Europar03, Vecpar04, BDAOS5, IEEE
ICPADSO05, VLDB-WDDIRO05, DAPDO5]



i Context

= Update-intensive applications
= e.g. Application Service Providers

= Database cluster with shared-nothing
architecture and fast, reliable network

= Data replication to improve availability and
performance



DB cluster architecture

Node 1

Global User
Directory

Node 2

Request Router

A
A

Application Manager

A

Y
Transaction Load
Balancer

A
A

Replication Manager

DBMS
v

o

Current
LLoad
Monitor

Global

Placement

Node n




i Preventive replication - objectives

= Multi-master replication
= Each node can update replicas

= Database autonomy

= Support black-box DBMS
= Strong replica consistency

= Equiv. to ROWA (read one — write all)
= Non-blocking

= Unlike 2PC

= Performance
= Scale-up and speed-up



i Preventive Replication - assumptions

= Network interface provides FIFO reliable
multicast

= Max s the upper bound of the time
needed to multicast a message

= Clocks are g-synchronized

= Each transaction has a chronological
timestamp C (its arrival time)



Preventive replication - consistency

= Consistency Criteria = total order

= [ransactions are received In the same order
at all nodes involved: this corresponds to the
execution order

= To enforce total order, transactions are
chronologically ordered at each node using their
delivery time

delivery time= C+ Max+ &€

= After Max+e¢, all transactions that may have
committed before C are supposed to be received
and executed before 7



i Preventive replication - principle

= Propagation

= When a node /receives a trans. 7, it
multicasts it to all nodes including itself

= Each node puts 7 in pending queue g;in FIFO order

= Scheduling

= At each node, all pending transactions are
ordered wrt delivery times
« After expiration of its delivery time, 7is put In
running gqueue

s Execution

= Transactions in running queue are submitted
to the DBMS for execution 9



Queues management

Pending queues

(one per node)

From Node 1

Ty

T

Ty

Running queue

From Node 2

Refresher

T3 Ty | Ty

T

Ts

T

schedule

w exec @

10



Preventive replication - configurations

S

= Partially replicated

SII

R, S,

= Partially replicated

PRIMARY copies (R):
Can be updated only
on master node

Secondary copies (r):
read-only

MULTIMASTER copies

(R,): Can be updated
on more than one
node

11



i Partially replication - problem

= Some transactions cannot

be executed
T1(R, S)

l N1 Example@N2
R, S, UPDATE R SET ¢c1 WHERE c2 IN
A (SELECT ¢3 FROM 9S);
BZ §2

12



artially Replicated Configurations (2)

Client Client
lTl(rS, Wg) %nswer T,
N1
Nl Bla §1 Nl Bl! §1 Bl! §1 Nl Bll §]_
BZ §2 Bz §2 Bz §2
N2 N3 TN2 N3 " N2 N3
Standby Perform
Step 1 Step 2 Step 3 Step 4 Step 5

= On the target nodes, 7, waits (Step 3)

= After execution on the origin node, a Refresh Transaction (RT)) is
multicast to target nodes (Step 4)

= R7,Iis executed to update replicated data

13



i Replication Manager Architecture

Clients =

[

Global Data
Placement

J

RT-Log

RT

=

\ 4 .
Repliqua | Log g Deliver
Interface Monitor /
. o RT Refresher
T
Propagator Receiver
Replication manager ?

v

Network

14




Optimization: eliminating delay times (1)

= In a cluster network, messages are naturally
totally ordered [Pedonne & Schiper, 1998]

= We can parallelize transaction scheduling and
execution

= Submit a transaction to execution as soon as It Is
received

= Schedule the commit order of the transactions
= A transaction can be committed only after Max + ¢

= If a transaction iIs received out of order, abort and
re-execute all younger transactions
= Yields concurrent execution of non conflicting
transactions

15



i Optimization: Eliminating delay times (2)

Basic Preventive replication

7 —sohdung y— Executon—(_commit >

I’'s refreshment time = Max + € + t

Optimized Preventive Replication

I's refreshment time = maximum (Max + g, t)

16



* RepDB* Prototype: Architecture

Network

17



i RepDB* Prototype: Implementation

= Open Source Software under GPL
= 200 downloads after one month of release
= Java (10K+ lines)

= DBMS is a black-box
= PostgreSQL, Oracle

= JDBC interface (RMI-JDBC)

= Uses Spread toolkit (Center for Networking and
Distributed Systems - CNDS) to manage the network

= Simulation version In SimJava

http://www.sciences.univ-nantes.fr/ATLAS/RepDB

18



i TPC-C benchmark

= 1/5/ 10 Warehouses
= 10 clients per Warehouse

s [ransactions’ arrival rate is 1s/ 200ms/
100/ms

» Load = combination of

= Update transactions
= New-order: high frequency (45%)
« Payment: high frequency (45%)
= Read-only transactions
= Order-status: low frequency (5%)
= Stock-level: low frequency (5%)

19



i Experiments

= Cluster of 64 nodes (Paris@irisa.fr)
= PostgreSQL 7.3.2 on Linux
= 1 Gb/s network

= 2 Configurations
« Fully Replicated (FR)

» Partially Replicated (PR). each type of
TPC-C transaction runs using ¥4 of the
nodes

20



Scale up

Response time of update transactions

1200

—_ ——1
g 1000 - ——5
Y —a—10
o 800 -
= Ay A —h—h— 5 —A
o 600 -
e
8. 400 - — T
4 *—o——0—o —e
&’ 200 -

O I I I

0 16 32 48 64

number of nodes

a) Fully Replicated (FR)

Response times (ms)

1200

=

o

o

o
\

800
600 -
400
200

——1
=5
——10
Ah—Ah——4 4 —h— —A
-—u—u—g

*~o——o—

-a—

16 32

48

number of nodes

b) Partially Replicated (~R)

64

21



Speed up

Launch 128 clients that submit Order-status

transactions (read-only)

2000
- ——1
: 1600 ;
& 1200 | —A—10
Q
o
w800 -
2
]
S 400
&
0 I I I
0 16 32 48

number of nodes

a) Fully Replicated (FR)

64

Queries per second

2000

[EN
(o2}
o
o

1200

800

400

——1

——10

0 16 32 48

number of nodes

b) Partially Replicated (PR)

64

22



Impact of optimistic execution

6
5 4 —O— — =
4 7 N
3 _
—e— Unordored
27 —m— Aborted
1 _
o Ba—NEa g ——*
0 16 32 48 64

number of nodes

a) Fully Replicated (FR)

percentage
N oW A
|

(6] (o))
\

—r———

—e— Unordored

—m— Aborted

iy " , n
0 16 32 48 64
number of nodes

[EEN
|

o
|

b) Partially Replicated (~R)

23



Delay vs. Trans. size

Delay (ms)

8 nodes

—&— OptPrev
—l— Max

100 200 300

Transaction size (ms)

400

24



i Conclusion

= Large-scale experimentation with 64-node
cluster
= Excellent scale-up and speed-up for typical OLTP
= Important impact of optimizations
= TiIme-consuming activity

s Future work

= More experimentation going on with various loads
= Extensions to WAN for GRID5000

25



