Markov random fields for texture recognition with
local invariant regions and their geometric

relationships

Juliette BLANCHET, Florence FORBES & Cordelia SCHMID
INRIA Rhone-Alpes (TEAMS LEAR AND MISTIS), 655, avenue de I’'Europe — Montbonnot — 38334 Saint-Ismier Cedex — France

ABSTRACT

We describe a new probabilistic framework for recognizing textures in images. Images
are described by local affine-invariant descriptors and their spatial relationships. We
introduce a statistical parametric models of the dependence between descriptors. We use
Hidden Markov Models (HMM) and estimate the parameters with a recent technique ba-
sed on the mean field principle. Preliminary results for texture recognition are promising
and outperform existing techniques.

I Introduction

Context : local photometric descriptors computed for invariant inter-
est regions have proved to be very successful in applications such as object
recognition [6], texture classification [3] and texture recognition [4]. They are
distinctive, robust to occlusions and invariant to image transformations. Their
geometric organization is very informative but modelling their relative
spatial organization is still an open issue.

Previous work : in [4] neighborhood statistics are modeled by co-occurrence
of descriptors and included into the recognition step based on relaxation [7].
It does not use an explicit organizational model of the data during learning.
Similarly, [5, 8] use features augmented with spatial information based on a
a two-level scheme : (1) intensity-based textons, (2) histograms of textons
distributions over local neighborhoods. No spatial model is explicitly
assumed so that the neighborhood information captured is somewhat wea-
kened.

Our approach : our claim is that there is some gain in assuming that the
feature vectors are dependent statistical variables and consequently in using
parametric statistical models to account for this dependencies explicitly.

We show that recognition can be improved by using a Hidden Markov
Model (HMM) as organizational model when learning the texture
classes. The parameter estimation of such a model is in this context not trivial.
We use recent estimation procedures based on the Expectation-Maximization
(EM) algorithm and on the mean field principle of statistical physics [2].

HMRF for textures : each texture class is a "mixture” of K sub-classes

For an image of known texture m
Descriptors X ={X;,i € S}
Texture m sub-classes (hidden) Z ={Z;,i € S} discrete MRF, Z; € [cp1, - CK]
X; conditionnally independent given Z
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— f(x;|©,,%) multivariate Gaussmn distribution

—Singleton potentials : Vj(z;) = —am(k) if z; = ¢

— Pair-wise potentials : V;;(z;, 2j) = —bm(k,1) if z; = cpi, 25 = ey
If (b)) = B x I, Potts model of image segmentation

_Am — (am(k)7 bm(k7 l)) and ‘I’m — (®m17 s ®mK7 Am)

II Hidden Markov Models for textures

1. Feature extraction

Features are local characteristics : compact and complete image des-
cription, information about shape and local structure, invariant to various
transformations.

Extraction in 2 steps :
—Interest point detection (Laplacian) at some specific signal changes : (1)

find locations in scale space where a normalized Laplacian measure attains
a local maximum, (2) associate to each interest point a circular blob with
radius=scale, (3) turn circles into ellipses (affine adaptation)
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—Descriptor computation (Spin images) : (1) turn ellipses into unit circles,
(2) two dimensional histogram of the intensity = affine invariant descrip-
tors : multi-dimensional vectors (80)
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2. Modelling textures

Spatial dependencies : Descriptors are spatially dependent = Statistical

model that captures spatial relationships between descriptors = Hidden
Markov Random Fields (HMRF)

Neighborhood graph : eg. Points I and J are neighbours

Markov Random Field : Z = {Z;,i € S} discrete field, N (i) neighbors
of site %

vz, { £E23|Z><9>){2}) = Plilzn ) & Vz, P(z) =W ltexp(—H(z)) (gibbs measure)

where : H(z) = Z Vi(zi) + >_ Vij(zi, z5) (energy function)

i~ g
W=> exp(
Z

H(z)) (normalizing constant, intractable)

Hidden Markov Random Field : taking observations into ac-
count

Observations X = {Xj;,7 € S} measures
Hidden data Z = {Z;,i € S} labels, discrete MRF, Z; € L =1, ..., K]

Incomplete data, {
— posterior MRF : Pg(z|x) = Wﬁl exp(—Hz(z)) with Hy(z) = H(z)+ H(x|z)

H(z) : regularizing term (prior, constraints satisfaction), H(x|z) : likelihood term

Recovering the unknow labels by 2 : MAP solution : z = arg énlﬁn H,(z)
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III Learning the distribution of descriptors
and their organization

1. Estimating parameters

Fach texture m is associated to a K sub-class HMRF model :
—Parameters ¥,,, = (@1, --., Ok, Apy) need to be estimated

—EM algorithm commonly used in problems with hidden data

Principle : rnIlaX log p(x|¥,,) replaced by rnIlaX IFllog(p(x, Z|¥,,))|x, ¥

Iterative procedure : at iteration (g) estimator ¥'9 of ¥,

—For HMRF, because of the spatial dependencies, EM intractable (W...)
= Mean field approach to approximate by independent variables

2. Mean Field principle for MRF

— Neglecting fluctuations from the mean in the neighborhood of each site
For site i : Vj € N(i), z; fixed to [E[Z;] = u;
= system of independent variables P(z) = 11 P(z|pn))

— Generalization : set the neighbors to constants z P(z) ~ ] P(zl2nva)
—Mean field principle for Z|x (MRF) P(z|x) ~ [ P(z|2Zn ), x)

3. EM-like algorithm

Iteration (g) in two steps :
—(1). Create 79 from x and W~

7(@) = current conditionnal mean mean field algorithm

g
7(4) = current conditionnal mode mode field algorithm
74 = simulation simulated field algorithm

—(2). Apply EM for the factorized model to get updated it

Learning step : For each texture m, apply an EM-like algorithm
= estimators of ¥,,

IV Classification and retrieval

1. Modelling an image of unknow texture

An image of unknown texture is a "mixture” of M textures = M x K
sub-classes

‘ Descriptors X = {X;,i € S}
{ Hidden data Z = {Z;,i € S} discrete MRF, Z; € [c11, ..., cy k]
| X; conditionnally independent given 7

p(z|¥) = Z ZP = Cok| A) f (| O pr)

m=1 k=1

— f(2;|©,,,) Gaussian with ©,,,;. learned
—Hidden field : singleton potentials : (), pair-wise potentials : M K x M K matrix learned
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Retrieval : at site ¢, with all parameters fixed (learned) :

K
—a site ¢ is assigned to texture m maximizing > P(Z; = ¢;k|%;)
k=1
K
—if single-texture, the image is assigned to texture m maximizing > Y P(Z; = ¢pr|;)
1€S k=1

But : P(Z; = cpg|z;) is intractable. = EM-like algorithm to estimate
P(Z; = cpi|x;) = pi(my k) form=1,... M, k=1,...K

Initialization : textures are equally likely
pz(-o)(m, k) = ﬁf’leam(cmk]xi) (learned with EM or "spatial” EM, section III)
Updating (our approach) : using the simulated field algorithm :
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Alternative : using the NEM algorithm :

M
P (m k) o f(@ilOmp)mms exp(— Y Y B(mk, m'1) p\(m, 1))
FJEN(G) m'=1[=1

Alternative : using Relaxation (prior energy based, no data, no model!) :
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V Experimental results

1. Sample of 7 texture classes

Bnek Carpet Chair Floor 1 Floor 2 Marble ~ Wood

7x10="70 imagesl -

2. Single texture images

10 images ~ 4000 descriptors for each texture

Classification rates in % for individual regions
Brick | Carpet | Chair| Floorl | Floor2 | Marble| Wood

EM 48 7 52 00 o0 17 30
Relaxation | 78 96 72 80 80 19 42
NEM 82 98 78 88 80 20 43
Simulated F.| 81 97 7 80 86 26 46

Significant gain :
—in incorporating spatial relationships (Relaxation, NEM, Simulated Field)
—in using a statistical parametric model (NEM, Simulated Field)

Variant using Delaunay neighborhood graph, image descriptors SIF'T and a
dimension reduction technique (Simulated Field) [1] :

Brick | Carpet | Chair| Floorl | Floor2 | Marble Wood
EM 63 35 47 35 36 23 56

Relaxation | 93 63 70 74 79 33 95

Simulated F.| 99 63 85 88 89 76 98

3. Multi-Texture images

Various algorithms : Maximum likelihood, Relaxation, NEM
and Simulated Field for an image composed of Chair and Wood

Bnek Carpet Chan" Floor 1 Floor 2 Marble Wood

Simulated Field on an image composed of Brick, Marble and
Wood

Brick Carpet Chair Floor 1 Floor 2 Marble Wood

—Marble badly learned
—Simulated Field = homogeneous groups = classified in brick and wood

V1 Conclusion

What we did :

—Hidden Markov Model for feature vectors at irregular locations (Generaliza-
tion of Potts Model for textures)

—Gain in incorporating spatial relationships between descriptors, in using a

statistical parametric model
— Statistically based model selection (BIC) : eg. choice of K

What remains to be done :

—Deviation from the model and data transformation

— Choice of the neighborhood structure and appropriate image descriptors
—Object recognition
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