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1. The problem and existing solutions

•The problem:

– Classification is very difficult in high-dimensional spaces because learning methods suffer from
the curse of dimensionality.

– The data usually contain clusters hidden in different subspaces.

•Existing solutions:

– Global dimension reduction techniques (PCA, feature selection).

– Dimension reduction in a classification purpose (Fisher discriminant analysis).

– Parsimonious models which require the estimation of fewer parameters.

2. The main idea of the new model

In order to efficiently solve the problem of high dimensionality, we propose a new parametrization
of the Gaussian model which combines:

• a local linear approach: The new parametrization takes into account the specific subspace
and the intrinsic dimension of each class.

• a parsimonious model: Classes are assumed spherical in order to reduce the number of
parameters to estimate.

This new parametrization gives a robust clustering method in high-dimensional spaces and its
decision rule is easily understood.

3. The new Gaussian model [aibiQidi]

• The class conditional densities are assumed Gaussian N (µi, Σi) with means µi, covariance
matrices Σi and a priori probabilities πi, ∀i = 1, ..., k.

• Let Qi be the orthogonal matrix of eigenvectors of the covariance matrix Σi.

• The class conditional covariance matrix ∆i is defined in the eigenspace of Σi by:

∀i = 1, ..., k, ∆i = Qt
i Σi Qi.

We assume in addition that ∆i has only two different eigenvalues ai > bi. Thus, ∆i has the
following form in the eigenspace of the class Ci:
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• Let Ei be the affine space generated by eigenvectors associated to the eigenvalue ai and such
that µi ∈ Ei. We also define E

⊥
i such that Ei ⊕ E

⊥
i = R

p and µi ∈ E
⊥
i . Finally, let Pi and

P⊥
i be the projection operators on Ei and E

⊥
i . Figure 1 summarizes these notations.

4. High Dimensional Discriminant Analysis
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Fig 1: The subspaces Ei and E
⊥
i of the class Ci.

Theorem 1. Using the new model [aibiQidi] in the supervised framework, the Bayes

rule yields the decision rule of HDDA which assigns x to the class minimizing the

following cost function Ki(x):

Ki(x) =
1

ai
‖µi − Pi(x)‖2 +

1

bi
‖x − Pi(x)‖2 + di log(ai) + (p − di) log(bi) − 2 log(πi).

By allowing some parameters to be common between classes, HDDA gives particular rules wich
correspond to different types of regularization.

5. High Dimensional Data Clustering

If we use the model [aibiQidi] in the Gaussian mixture model framework, the EM algorithm for
estimating the parameters θi = {µi, ai, bi, Qi, di}, can be written as follows.

Theorem 2. The E step computes the conditional probabilities tij with:

t
(q)
ij = 1/

k
∑

l=1

exp

(

1

2
(K

(q)
i (xj) − K

(q)
l (xj))

)

,

where Ki is defined in Theorem 1. The M step maximizes the conditional likelihood

and the updating formulas are given in Section 6.

6. Parameters estimation

•Estimation of Qi, ai and bi: Estimation of these parameters is done by the Maximum
Likelihood method. The di first columns of Qi are the eigenvectors associated to the di largest

eigenvalues of Σ̂i. The estimator of ai is âi =
∑di

l=1 λil/di and the estimator of bi is b̂i =
[

tr(Σ̂i) −
∑di

l=1 λil

]

/(p − di), where λil is the lth largest eigenvalues of Σ̂i.

• Intrinsic dimension estimation: The estimation of intrinsic dimensions di is based on
scree-test of Catell which looks for a break in the eigenvalues scree.

7. Application to object recognition
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Fig 2: Object localization results. Fig 3: Image classification results.

•Our object recognition approach:

– Our approach is based on local descriptors. The detection of interest points is done using the
Harris-Laplace operator. Each interest point is then converted to a 128-dimensional descriptor by
the SIFT operator.

– We use our classification methods in a weakly-supervised framework, i.e. objects in training images
are not segmented.

•Learning of discriminant parts:

– The learning of discriminant parts of the object consists in organizing data in k classes using
HDDC and then computing the discriminant capacity P (Ci ∈ O|Ci) of each class.

Fig 4: Localization of the object ”bicycle” on real images with our statistical approach.

•Object localization:

– HDDA classifies each interest point xj and provides the a posteriori probability P (xj ∈ Ci|xj)
that the interest point xj belongs to the class Ci.

– Then, we compute the probability P (xj ∈ O|xj) =
∑k

i=1 P (Ci ∈ O|Ci)P (xj ∈ Ci|xj) that xj
belongs to the object.

• Image classification:

– We compute the probabilistic score S = 1
m

∑

xj∈I

∑k
i=1 P (Ci ∈ O|Ci)P (x ∈ Ci|x) where m is

the number of interest points on I .

– We decide that a test image contains the object if the score S is larger than a given threshold.


