

HIGH DIMENSIONAL DATA CLASSIFICATION FOR PATTERN RECOGNITION

Charles BOUVEYRON, Stéphane GIRARD and Cordelia SCHMID

LMC-IMAG & INRIA Rhône-Alpes

This work was supported by the French department of research under the program "ACI Masse de données"

1. The problem and existing solutions

- The problem:
- Classification is very difficult in high-dimensional spaces because learning methods suffer from the curse of dimensionality.
- The data usually contain clusters hidden in different subspaces.

• Existing solutions:

- -Global dimension reduction techniques (PCA, feature selection).
- Dimension reduction in a classification purpose (Fisher discriminant analysis).
- Parsimonious models which require the estimation of fewer parameters.

3. The new Gaussian model $[a_i b_i Q_i d_i]$

- The class conditional densities are assumed Gaussian $\mathcal{N}(\mu_i, \Sigma_i)$ with means μ_i , covariance matrices Σ_i and *a priori* probabilities $\pi_i, \forall i = 1, ..., k$.
- Let Q_i be the orthogonal matrix of eigenvectors of the covariance matrix Σ_i .
- The class conditional covariance matrix Δ_i is defined in the eigenspace of Σ_i by:

 $\forall i = 1, ..., k, \Delta_i = Q_i^t \Sigma_i Q_i.$

We assume in addition that Δ_i has only two different eigenvalues $a_i > b_i$. Thus, Δ_i has the

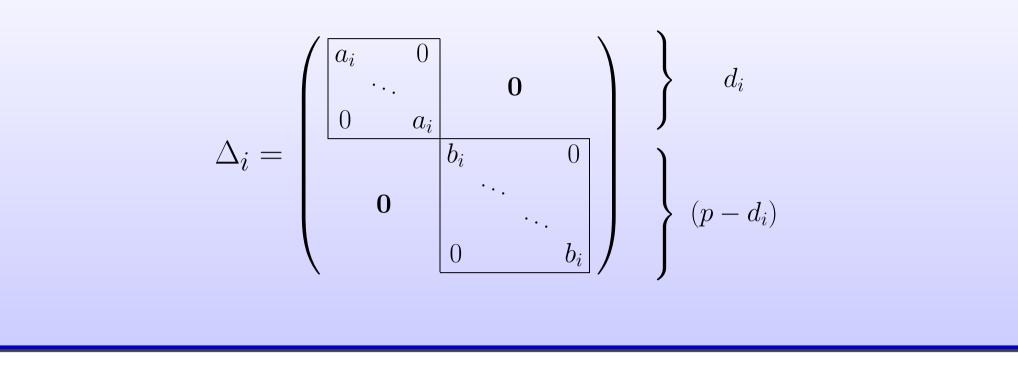
2. The main idea of the new model

In order to efficiently solve the problem of high dimensionality, we propose a new parametrization of the Gaussian model which combines:

- a local linear approach: The new parametrization takes into account the specific subspace and the intrinsic dimension of each class.
- a parsimonious model: Classes are assumed spherical in order to reduce the number of parameters to estimate.

This new parametrization gives a robust clustering method in high-dimensional spaces and its decision rule is easily understood.

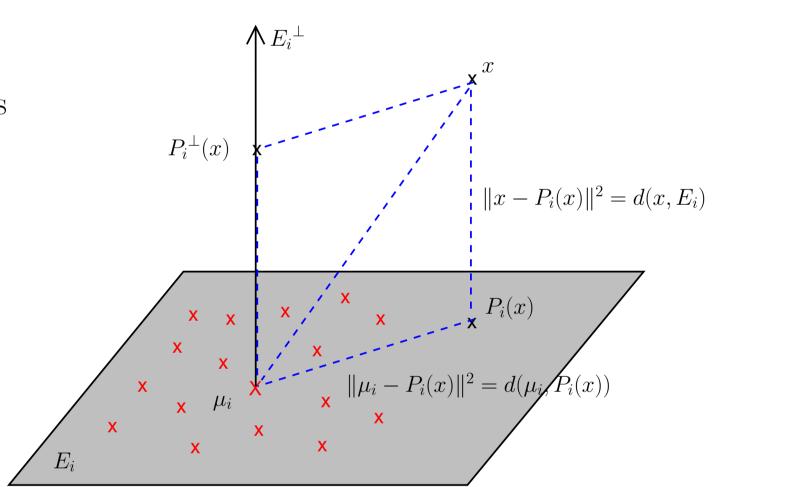
following form in the eigenspace of the class C_i :



• Let \mathbb{E}_i be the affine space generated by eigenvectors associated to the eigenvalue a_i and such that $\mu_i \in \mathbb{E}_i$. We also define \mathbb{E}_i^{\perp} such that $\mathbb{E}_i \oplus \mathbb{E}_i^{\perp} = \mathbb{R}^p$ and $\mu_i \in \mathbb{E}_i^{\perp}$. Finally, let P_i and P_i^{\perp} be the projection operators on \mathbb{E}_i and \mathbb{E}_i^{\perp} . Figure 1 summarizes these notations.

4. High Dimensional Discriminant Analysis

PSfrag replacements



5. High Dimensional Data Clustering

If we use the model $[a_i b_i Q_i d_i]$ in the Gaussian mixture model framework, the EM algorithm for estimating the parameters $\theta_i = \{\mu_i, a_i, b_i, Q_i, d_i\}$, can be written as follows.

Theorem 2. The E step computes the conditional probabilities t_{ij} with:

FIG 1: The subspaces \mathbb{E}_i and \mathbb{E}_i^{\perp} of the class C_i .

Theorem 1. Using the new model $[a_i b_i Q_i d_i]$ in the supervised framework, the Bayes rule yields the decision rule of HDDA which assigns x to the class minimizing the following cost function $K_i(x)$:

$$K_i(x) = \frac{1}{a_i} \|\mu_i - P_i(x)\|^2 + \frac{1}{b_i} \|x - P_i(x)\|^2 + d_i \log(a_i) + (p - d_i) \log(b_i) - 2\log(\pi_i).$$

By allowing some parameters to be common between classes, HDDA gives particular rules wich correspond to different types of regularization.

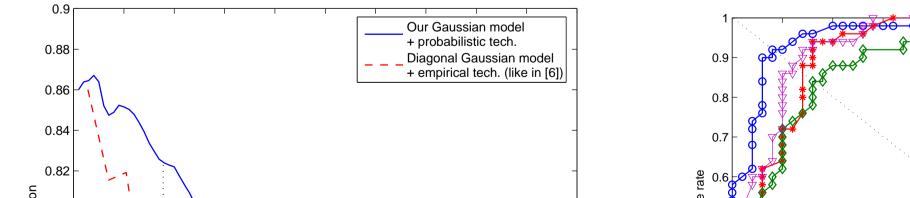
where K_i is defined in Theorem 1. The M step maximizes the conditional likelihood and the updating formulas are given in Section 6.

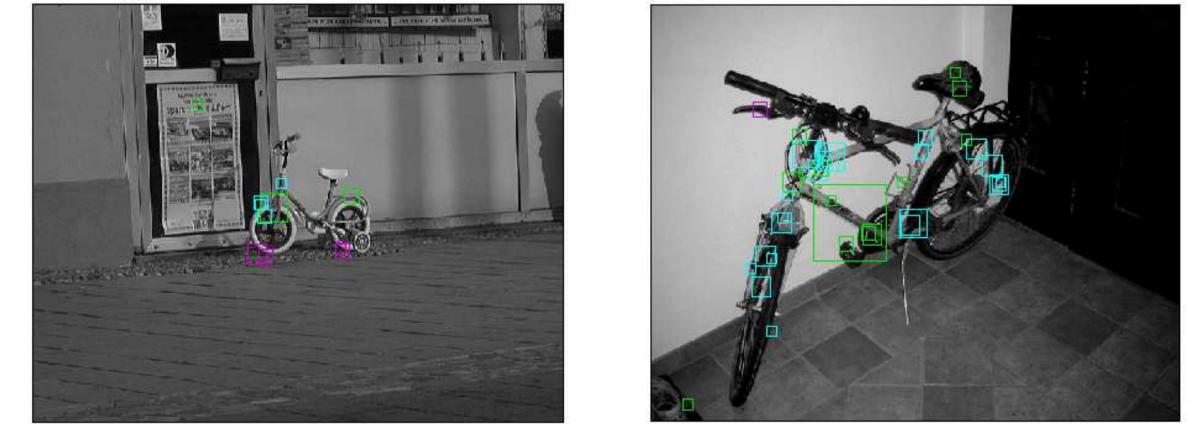
6. Parameters estimation

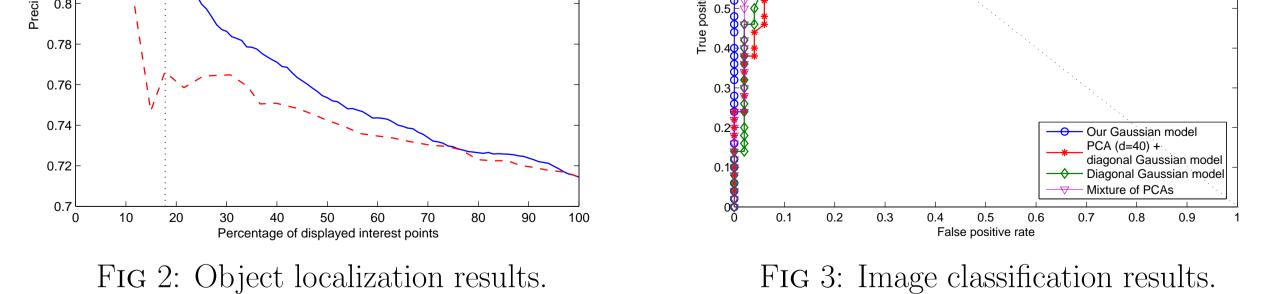
• Estimation of Q_i , a_i and b_i : Estimation of these parameters is done by the Maximum Likelihood method. The d_i first columns of Q_i are the eigenvectors associated to the d_i largest eigenvalues of $\hat{\Sigma}_i$. The estimator of a_i is $\hat{a}_i = \sum_{l=1}^{d_i} \lambda_{il}/d_i$ and the estimator of b_i is $\hat{b}_i = \hat{b}_i$ $\left[\operatorname{tr}(\hat{\Sigma}_{i}) - \sum_{l=1}^{d_{i}} \lambda_{il}\right] / (p - d_{i}), \text{ where } \lambda_{il} \text{ is the } l \text{th largest eigenvalues of } \hat{\Sigma}_{i}.$

• Intrinsic dimension estimation: The estimation of intrinsic dimensions d_i is based on scree-test of Catell which looks for a break in the eigenvalues scree.

7. Application to object recognition







• Our object recognition approach:

- -Our approach is based on local descriptors. The detection of interest points is done using the Harris-Laplace operator. Each interest point is then converted to a 128-dimensional descriptor by the SIFT operator.
- -We use our classification methods in a weakly-supervised framework, *i.e.* objects in training images are not segmented.
- Learning of discriminant parts:
- The learning of discriminant parts of the object consists in organizing data in k classes using HDDC and then computing the discriminant capacity $P(C_i \in O | C_i)$ of each class.

FIG 4: Localization of the object "bicycle" on real images with our statistical approach.

• Object localization:

- -HDDA classifies each interest point x_i and provides the *a posteriori* probability $P(x_i \in C_i | x_i)$ that the interest point x_i belongs to the class C_i .
- Then, we compute the probability $P(x_j \in O|x_j) = \sum_{i=1}^k P(C_i \in O|C_i) P(x_j \in C_i|x_j)$ that x_j belongs to the object
- Image classification:
- -We compute the probabilistic score $S = \frac{1}{m} \sum_{x_i \in I} \sum_{i=1}^k P(C_i \in O|C_i) P(x \in C_i|x)$ where m is the number of interest points on I.
- -We decide that a test image contains the object if the score S is larger than a given threshold.