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1. The problem and existing solutions I 3. The new Gaussian model [a;b;Q;d;]

e The problem: e The class conditional densities are assumed Gaussian N (u;, 2;) with means p;, covariance
— Classification is very difficult in high-dimensional spaces because learning methods suffer from matrices 2; and a priore probabilities 7, Vi =1, ..., k.

the curse of dimensionality. e Let (); be the orthogonal matrix of eigenvectors of the covariance matrix ;.
— The data usually contain clusters hidden in different subspaces.

RHONE-ALPES

e The class conditional covariance matrix A; is defined in the eigenspace of >; by:
¢ Existing solutions:

Vi=1,...k A; = QL% Qi

— Global dimension reduction techniques (PCA, feature selection).

— Dimension reduction in a classification purpose (Fisher discriminant analysis).

-

— Parsimonious models which require the estimation of fewer parameters. We assume in addition that A; has only two different eigenvalues a; > b,. Thus, A; has the

following form in the eigenspace of the class C}:

| 2. The main idea of the new model I (

In order to efficiently solve the problem of high dimensionality, we propose a new parametrization
of the Gaussian model which combines:

e a local linear approach: The new parametrization takes into account the specific subspace
and the intrinsic dimension of each class.

e a parsimonious model: Classes are assumed spherical in order to reduce the number of
parameters to estimate. o Let E; be the affine space generated by eigenvectors associated to the eigenvalue a; and such

This new parametrization gives a robust clustering method in high-dimensional spaces and its that pu; € E;. We also define E@L such that ; & E@L = RP and p; € E@L . Finally, let F; and
decision rule is easily understood. P,L-L be the projection operators on [E; and IE‘Z,LL Figure 1 summarizes these notations.

4. High Dimensional Discriminant Analysis | 5. High Dimensional Data Clustering I

If we use the model |a;b;Q;d;] in the Gaussian mixture model framework, the EM algorithm for
estimating the parameters 6; = {1;, a;, b;, Q;,d; }, can be written as follows.

r

Iz — Po)|? = d(z. E) Theorem 2. The FE step compules the conditional probabilities t;; with:

k
1
40 = 1o (580 - (%)),
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where K; 1s defined in Theorem 1. The M step maximizes the conditional likelihood
and the updating formulas are given in Section 6.

F1G 1: The subspaces IE; and ]EZL of the class C;.

| 6. Parameters estimation I
Theorem 1. Using the new model |a;b;Q;d;] in the supervised framework, the Bayes

rule yields the deciston rule of HDDA which assigns x to the class minimizing the
following cost function K;(x):

e Estimation of ();,, a; and b;: Estimation of these parameters is done by the Maximum
Likelihood method. The d; first columns of (), are the eigenvectors associated to the d; largest

1 1 9
Ki(z) = CL_Z'HMZ — Bi(x) , Pi(z)||” + d;log(a;) + (p — d;) log(b;) — 2log(). eigenvalues of ZA]Z The estimator of a; is a; = ngzzl A\;;/d; and the estimator of b; is b; =

tr(%;) — Zgllzl Xii| /(p — d;), where A\ is the Ith largest eigenvalues of ¥;.

e Intrinsic dimension estimation: The estimation of intrinsic dimensions d; is based on
By allowing some parameters to be common between classes, HDDA gives particular rules wich scree-test of Catell which looks for a break in the eigenvalues scree.

correspond to different types of regularization.
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F1G 2: Object localization results. FiG 3: Tmage classification results. FIG 4: Localization of the object "bicycle” on real images with our statistical approach.
e Our object recognition approach: * Object localization:
— Our approach is based on local descriptors. The detection of interest points is done using the —HDDA classifies each interest point x; and provides the a posteriori probability P(z; € Cjlz;)
Harris-Laplace operator. Each interest point is then converted to a 128-dimensional descriptor by that the interest point x; belongs to the class C;.
the SIFT operator. — Then, we compute the probability P(z; € O|z;) = Zi‘le P(C; € O|Cj)P(x; € Cj|zj) that x;
— We use our classification methods in a weakly-supervised framework, i.e. objects in training images belongs to the object.
are not segmented. e Image classification:
e Learning of discriminant parts: — We compute the probabilistic score S = % ije 7 Zi‘le P(C; € O|C;))P(x € Cj|x) where m is
— The learning of discriminant parts of the object consists in organizing data in k classes using the number of interest points on 1.

HDDC and then computing the discriminant capacity P(C; € O|C;) of each class. — We decide that a test image contains the object if the score S is larger than a given threshold.




