
SPOPS: Secure Operating Systems for Trusted
Personal Devices

Gilles Barthe

INRIA Sophia-Antipolis, France

http://www.lifl.fr/RD2P/SPOPS/

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Setting

ICT infrastructures are evolving into huge distributed networks of
smart devices:

flexibility: aimed at providing seamless access to located
services,

heterogeneity: devices may greatly vary in connectivity,
computational power, libraries, etc.

extensibility: possible to modify or enhance the computational
infrastructure over the network (remote maintenance), or able
to upgrade itself by fetching off-the-shelf components
(self-healing or self-evolving system)

interactivity: possible to delegate some tasks (computation,
storing) to other devices

security: devices and applications are subject to stringent
security constraints (confidentiality, integrity, availability,
privacy)

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Beyond the sandbox model

We focus on very large networks of JVM-enabled devices without
making two common assumptions:

distinction between TCB and untrusted applications

idea of central trust authority

Libraries

Virtual Machine

Applet Applet

�������������������������
�������������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

Applet

Virtual Machine

Libraries

Applet

Ideal scenario Scenario considered

Need of expressive formalisms for security policies.

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Objectives

Develop methods to enforce standard security properties:
confidentiality, availability

Propose a security architecture to enforce customizable
security policies in such a model

Experiment with the architecture to validate components of
Java-based operating systems

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Confidentiality and availability

Confidentiality:

Sound information flow bytecode verifier for sequential JVM
Type-preserving compilation for a fragment of JFlow.
Program transformation to avoid timing leaks.
Logical characterizations of non-interference.

Availability: we focused on two resources, i.e. CPU and
memory.

Provided WCET calculus for embedded code, with
pre-calculation off-device.
Provided logical characterizations of memory usage.

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Proof Carrying Code

Programs are equipped with certificates, i.e. mathematical proofs
that they obey their specification, which are verified automatically
at the consumer side by a proof checker:

No need to trust the code producer nor the compiler

Transparent to the code consumer (no run-time penalty, no
proof-search)

Versatile (covers a wide range of safety policies)

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Which PCC?

In the context of mobile and embedded code, correctness
guarantees must be given for compiled programs

There is currently no mechanism for bringing the benefits of
source code verification to code consumers

The objective of our work is to build a mechanism that
enables to exploit the results of source code verification for
checking compiled programs

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Certificate Translation

Definition (Certificate Translation)

Mechanism that allows transferring evidence from source programs
to compiled programs (i.e. translating certificate of source
programs into certificates of compiled programs)

Remarks:

Certificate translation is not certified compilation, nor
certifying compilation.

Certificate translation is relevant for interactive and automatic
verification.

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Towards Certificate Translation for Java

The proof environment JACK has been extended to support:

Compilation of JML annotations

Weakest Precondition Calculus at bytecode level

We have shown that non-optimizing compilers enjoy (almost-)
preservation of proof obligations, an instance of certificate
translation where the translation of proofs is the identity.

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Applications

JITS:

JACK has been used to show exception safety for TCP/IP and
scheduler.
Annotations on bytecode have been used to optimize
bytecodes.

Joint work between A. Courbot and G. Grimaud (LIFL), J.-L.
Lanet and M. Pavlova (EVEREST), and J.-J. Vandewalle
(Gemplus).

Memory: Annotations on bytecode have been used to specify
and verify resource consumption of Java applets.

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices



Directions for future work

Combine type-based and logic-based analyzes for information
flow and resource usage

Extend JACK with certificates and implement certificate
translation

Validation of functional properties of components

Optimizing compilers and OS components written in DSLs

Journées Paristic 2005 SPOPS: Secure Operating Systems for Trusted Personal Devices


