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General context
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Emptiness test → solving two player games.
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Asynchronous automata

Size polynomial in the size of the system.

Problem : emptiness check more difficult.
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VERSYDIS : Thèmes

Thèmes:

Formalismes de spécification pour les systèmes concurrents.

Algorithmes et vérification des systèmes concurrents.

Synthèse de contrôleurs pour les systèmes concurrents

Jeux distribués.
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Plan

Two results:

• || • || · · · || •

?

� α

L(M) ∩ L(A¬α)
?
= ∅

Understanding of program logics for synchronous
communication.

Understanding of models of asynchronous communication.
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Mutual exclusion

x0,x1 global variables initialized to 0

Proc (0) :

while (true) do

(1) non-critical section(0) ; // nc

(2) while ( x1 == 1 ) do skip; // test

(3) x0 = 1; // req

(4) critical section(0); // cs

(5) x1 = 0; // nreq

Question :
Is mutual exclusion guaranteed in Proc(0)||Proc(1) ?
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Formal model : partial order
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Synchronous product of four automata.
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Words and Traces

Fix a finite alphabet Σ.

A word is a sequence of letters over Σ, i.e, a linear order with
elements labelled by elements of Σ.

Fix a reflexive and symmetric dependency relation D ⊆ Σ× Σ.

A Mazurkiewicz trace is a partial order such that every two
elements labelled by dependent letters are comparable.

In traces we explicitly represent the concurrency information.
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Verification with words

Thm[Büchi]: Regular ≡ MSOL.
Languages definable by finite automata are exactly those
definable in Monadic Second-Order Logic over words.

This is the basis of automata based techniques to
model-checking. Properties are translated to automata and
verification is reduced to emptiness checking.

•

?

� α

L(M) ∩ L(A¬α) = ∅
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Program logics

•

?

� α

L(M) ∩ L(A¬α) = ∅

Translation MSOL → automata results in non-elementary
blowup. That is why other logics are used : LTL, mu-calculus.

First-order logic and monadic second-order logics, serve as
expressivity benchmarks for all other logical formalisms.
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Verification with traces

Thm[Zielonka,. . . ]: Regular ≡ MSOL.
Trace languages definable by asynchronous finite automata are
exactly those definable in MSOL over traces.

This theorem can serve as a basis for verification with traces.

Wanted : logical formalisms with lower complexity than MSOL.

We have made within VERSYDIS an important step in
understanding ways of constructing such formalism.
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Global vs. Local logics

a1 b1 a1 b1 a1 · · ·

⊥ c

a2 b2 a2 · · ·

Configuration in a trace is a downward closed set of events.

Global logic is evaluated in configurations : T,C � α.

Local logic is evaluated in events : T, e � α.

Thm[Walukiewicz]: The satisfiability problem for a very simple
global logic has non-elementary complexity.
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Contribution of VERSYDIS

LTL ::= tt | ¬α | α ∧ β | 〈a〉α | α U β

Semantics of Until

⊥
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Thm[Diekert & Gastin]: LTL over traces is expressively
complete with respect to first-order logic over traces.

Thm[Gastin & Kuske]: Any local trace logic with finite number
of operators definable in MSOL is decidable in PSPACE.

These two theorems give a lower and upper bounds for logical
formalisms for traces.
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Synchronous communication models

• || • || · · · || •

?

� α

L(M) ∩ L(A¬α)
?
= ∅

Experiments with unwinding methods have started.
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Asynchronous communication models

Several peers exchange mes-
sages through P2P FIFO chan-
nels (unbounded).

Each peer : Finite automaton
with send/receive events.

ITU norm Z 100 (SDL)
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Communicating FSM and MSC

CFM : Finite automata with send and receive actions :
send P !Q(m) and receive P?Q(m)

Configuration of CFM : local states plus (unbounded) channel
contents.

P :

P !C

C :

C ?P

FIFO channels

Two equivalent linearizations :
P !C, C ?P, P !C, C ?P
P !C, P !C, C ?P, C ?P

P C

Message sequence chart (ITU norm Z120)
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Message sequence charts (MSC)

P C

a

b

c

d

Partial order semantics :

Events : a, b, c, d

Partial order :
process order : a <P c, b <C d

message order a < c, b < d

Logic over MSC : talks about process/message orders
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Bounds on CFM channels

CFM are Turing powerful. All nontrivial problems about CFMs
are undecidable.

Strong channel bound B :
in no execution the channel exceeds size B.

A CFM is strongly bounded iff there is a strong bound for all the
channels.

Thm[Mukund et.al.]: Strongly bounded CFM = MSOL over
bounded MSC.
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Strong bounds : too restrictive

P :

P !C

C :

C ?P

Producer/consumer : a typical
unbounded behaviour.

P !C, . . ., P !C, C ?P, . . ., C ?P

Strongly bounded CFM are too restrictive :

state space is finite → finite automata
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VERSYDIS : Weakly bounded channels

P :

P !C

C :

C ?P

R = (P !C C?P )∗

is a regular set of representatives

Every execution has an equi-
valent one in R.

Def: A CFM is weakly B bounded if there is a bound B such
that each execution is equivalent to a B-bounded execution.

Receiving messages can be scheduled so that channels do not
exceed some fixed size.

Implementations of protocols are usually weakly bounded.
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Contribution of VERSYDIS

Definition of weakly bounded CFM and characterisation à la
Büchi.

Thm[Genest, Kuske, Muscholl]: Weakly-bounded CFM ≡
MSOL over w-bounded MSC.

Cor: Model checking for weakly-bounded CFM as easy as for
strongly bounded CFM.

Systems that are not weakly bounded are in some sense
unreasonable (wrong use of concurrency).

It is undecidable if a system is weakly bounded.

The study of properties of weakly-bounded systems is
presented in the thesis of B. Genest.
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Other contributions

Game theory for verification.

Games for synthesis of distributed systems.

Algebraic theory of tree languages.

> 30 publications in journals and conferences.

A number of invited lectures : LICS, CSL, LPAR, . . .

A number of presentations at summer schools : Ecole de
printemps 2004 & 2006, Ecole de jeunes chercheurs, Infinite
Games and Applications.

1 PhD thesis defended, 1 to be defended in November,
3 close to being finished.
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